Food & Feed Research

TOXIN GENOTYPES OF Clostridium perfringens IN ANIMAL FEED AND THEIR ROLE IN THE ETHIOLOGY OF ENTEROTOXEMIA IN DOMESTIC ANIMALS

DOI: UDK:
636.085:579.86
JOURNAL No:
Volume 45, Issue 1
PAGES
67-77
KEYWORDS
Clostridium perfringens, toxin genotyping, animal feed, multiplex PCR assay, cpa gen, cpb2 gen
TOOLS Creative Commons License
Dubravka S. Milanov1*, Tamaš R. Petrović1, Dalibor S. Todorović1,
Nevenka R. Aleksić2, Ivana S. Čabarkapa3
1 Scientific Veterinary Institute „Novi Sad“, 21000 Novi Sad, Rumenački put 20, Serbia
2 University of Belgrade, Faculty of Veterinary Medicine, 11000 Belgrade, Bulevar oslobođenja 18,
Serbia
3 University of Novi Sad, Institute of Food Technology, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia

ABSTRACT

Clostridium perfringens is a Gram-positive, endospore-forming, anaerobic rod, ubiquitous in nature. C. perfringens strains can produce about 17 toxins. Many of them can lead to miscellaneous diseases, among which the enteric ailment may be the most common and is of utmost importance. In the present work 34 strains of C. perfringens isolated from feed and one from a cow suspected to have died of clostridial infection were subjected to molecular analysis. In order to detect the genotypes, the following genes coding for toxins were targetted: cpa, cpb, cpb2, cpe, etx and iap. The multiplex PCR assay revealed that all C. perfringens isolates from animal feed were of type A and b2-toxinogenic type A strains, possessing only the cpa (n=21), or both the cpa and the cpb2 genes (n=13). The importance of C. perfringens toxins a and b-2 in the pathogenesis of enterotoxemia is discussed and the regulation on the detection of this bacteria in animal feed questioned. The use of PCR in practise could enable the toxin-genotyping of C. perfringens isolates and, thus, provide a real basis for the establishment of maximum acceptable limits of this bacteria in feed.



Download full article PDF
DOWNLOAD PDF




REFERENCES

  1. Antonissen, G., Van Immerseel, F., Pasmans, F., Ducatelle, R., Haesebrouck, F., Timbermont L., Verlinden, M., Paul, G., Janssens, J., Eeckhaut, V., Eeckhout, M., De Saeger, S., Hessenberger,S., Martel, A., Croubels, S. (2014). The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS ONE, 9 (9), e108775. DOI:10.1371/journal.pone.0108775.
  2. Ata, N., Khairy, E.A., Dorgham, S.M., Zaki, M.S. (2013). Clostridium perfringens disease. Life Science Journal, 10 (1), 1599-1602.
  3. Baba, E., Ikemoto, T., Fukata, T., Sasai, K., Arakawa, A., McDougald, L.R. (1997). Clostridial population and the intestinal lesions in chickens infected with Clostridium perfringens and Eimeria necatrix. Veterinary Microbiology, 54 (3-4), 301-308.
  4. Baums, C.G., Schotte, U., Amtsberg, G., Goethe, R. (2004). Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Veterinary Microbiology, 100 (1-2), 11–16.
  5. Brynestad, S., Granum, P.E. (2002). Clostridium perfringens and foodborne infections. International Journal of Food Microbiology, 74 (3), 195-202.
  6. Bueschel, D.M., Jost, B.H., Billington, S.J., Trinh, H.T., Songer, J.G. (2003). Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Veterinary Microbiology, 94 (2), 121–129.
  7. Casagrande, M.F., Cardozo, M.V., Beraldo-Massoli, M.C., Boarini, L., Longo, F.A., Paulilo, A.C., Schocken-Iturrino, R.P. (2013). Clostridium perfringens in ingredients of poultry feed and control of contamination by chemical treatments. The Journal of Applied Poultry Research, 22 (4), 771–777.
  8. Collier, C.T., Hofacre, C.L., Payne, A.M., Anderson, D.B., Kaiser, P., Mackie, R.I., Gaskins, H.R. (2008). Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Veterinary Immunology and Immunopathology, 122 (1-2), 104–115.
  9. Cooper, K.K., and Songer, J.G. (2009). Necrotic enteritis in chickens: A paradigm of enteric infection by Clostridium perfringens type A. Anaerobe, 15 (1-2), 55–60.
  10. EFSA (2005). Opinion of the Scientific Panel on Biological Hazards on a request from the Commission related to Clostridium spp in food-stuffs.The EFSA Journal, 199, 1-65. Adopted on 9-10 March 2005. (https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2005.199).
  11. Freedman J.C., Shrestha A., McClane B.A. (2016). Clostridium perfringens enterotoxin: Action, genetics, and translational applications. Toxins, 8 (3), 73, DOI:10.3390/toxins8030073.
  12. Garmory, H.S., Chanter, N., French, N.P., Bueschel, D., Songer J.G., Titball, R.W. (2000). Occurrence of Clostridium perfringens beta 2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiology and Infection, 124 (1), 61–67.
  13. Gholamiandehkordi, A.R., Timbermont, L., Lanckriet, A., Van Den Broeck, W., Pedersen, K., Dewulf J., Pasmans, F., Haesebrouck, F., Ducatelle, R.,Van Immerseel, F. (2007). Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Pathology, 36 (5), 375-82.
  14. Goldner, S.B., Solberg, M., Jones, S., Post, L.S. (1986). Enterotoxin synthesis by nonsporulating cultures of Clostridium perfringens. Applied and Environmental Microbiology, 52 (3), 407-412.
  15. Hatheway, C.L. (1990). Toxigenic Clostridia. Clinical Microbiology Reviews, 3 (1), 66–98.
  16. Jia, W., Slominski, B.A., Bruce, H.L., Blank, G., Crow, G., Jones, O. (2009). Effect of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical Clostridium perfringens challenge. Poultry Science, 88 (1), 132-140.
  17. Kanakaraj, R., Harris, D.L., Songer, J.G., Bosworth, B. (1998). Multiplex PCR assay for detection of Clostridium perfringens in feces and intestinal contents of pigs and in swine feed. Veterinary Microbiology, 63 (1), 29-38.
  18. Keyburn, A.L., Boyce, J.D., Vaz, P., Bannam, T.L., Ford, M.E., Parker, D., Di Rubbo, A., Rood, J.I., Moore, R.J. (2008). NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathogens, 4, e26, DOI:10.1371/journal.ppat.0040026.
  19. Knarreborg, A., Simon, M.A., Engberg, R.M., Jensen, B.B., Tannock, G.W. (2002). Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Applied and Environmental Microbiology, 68 (12), 5918-5924.
  20. Kukier, E., Goldsztejn, M., Kwiatek, K. (2010). Epidemiological investigation of animal diseases caused by Clostridium perfringens strains isolated from feedingstuffs. Krmiva, 52 (6), 339-343.
  21. Kukier, E., Goldsztejn, M., Grenda, T., Kwiatek, K., Bocian, L. (2013). Microbiological quality of feed materials used between 2009 and 2012 in Poland. Bulletin of the Veterinary Institute in Pulawy, 57 (4), 535-543.
  22. Lindström, M., Heikinheimo, A., Lahti, P., Korkeala, H. (2011). Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiology, 28 (2), 192–198.
  23. Lyhs, U., Perko-Mäkelä, P., Kallio, H., Brockmann, A., Heinikainen, S., Tuuri, H., Pedersen, K. (2013). Characterization of Clostridium perfringens isolates from healthy turkeys and from turkeys with necrotic enteritis. Poultry Science, 92 (7), 1750–1757.
  24. Miyamoto, K., Qiyi Wen, Q., Bruce, A. McClane, B.A. (2004). Multiplex PCR genotyping assay that distinguishes between isolates of Clostridium perfringens type A carrying a chromosomal enterotoxin gene (cpe) locus, a plasmid cpe locus with an IS1470-like sequence, or a plasmid cpe locus with an IS1151 sequence. Journal of Clinical Microbiology, 42 (4), 1552-1558.
  25. Mueller-Spitz, S.R., Stewart, L.B., Klump, J.V., McLellan, S.L. (2010). Freshwater suspended sediments and sewage are reservoirs for enterotoxin-positive Clostridium perfringens. Applied and Environmental Microbiology, 76 (16), 5556-5562.
  26. Niilo, L. (1980). Clostridium perfringens in Animal disease: a review of current knowledge. The Canadian Veterinary Journal, 21 (5), 141-148.
  27. Sawires, Y.S., Songer, J.G. (2006). Clostridium perfringens: Insight into virulence evolution and population structure. Anaerobe, 12 (1), 23-43.
  28. Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T.,  Ogasawara, N., Hattori, M., Kuhara, S., Hayashi, H. (2002). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America, 99 (2), 996-1001.
  29. Smedley, J.G., Fisher, D.J., Sayeed, S., Chakrabarti, G., McClane, B.A. (2004). The enteric toxins of Clostridium perfringens. Reviews of Physiology, Biochemistry and Pharmacology, 152, 183-204.
  30. Songer, J.G. (1996). Clostridial enteric diseases of domestic animals. Clinical Microbiology Reviews, 9 (2), 216-234.
  31. SRPS ISO 7937: Horizontalna metoda za određivanje broja Clostridium perfringens –Tehnika brojanja kolonija (Horizontal method for enumeration of Clostridium perfringens Coloniy-count technique), Institut za standardizaciju Srbije, 2010.
  32. Tessari, E.N.C., Cardoso, A.L.P., Kanashiro, A.M.I., Stoppa, G.F.Z., Luciano, R.L., deCastro, A.G.M. (2014). Analysis of the presence of Clostridium perfringens in feed and raw material used in poultry production. Food and Nutrition Sciences, 5 (7), 614-617.
  33. Timbermont, L., Haesebrouck, F., Ducatelle, R., Van Immerseel, F. (2011). Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathology, 40 (4), 341–347.
  34. Udhayavel, S., Ramasamy, G.T., Gowthaman, V., Malmarugan, S., Senthilvel K. (2017). Occurrence of Clostridium perfringens contamination in poultry feed ingredients: Isolation, identification and its antibiotic sensitivity pattern. Animal Nutrition, 3 (3), 309-312.
  35. Uzal, F.A., McClane, B.A., Cheung, J.K., Theoret, J., Garcia, J.P., Moore, R.J., Rood, J.I. (2015). Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Veterinary Microbiology, 179 (1-2), 23-33.
  36. Uzal, F.A., Freedman, J.C., Shrestha, A., Theoret, J.R., Garcia, J., Awad M.M., Adams, V., Moore, R.J., Rood, J.I., McClane, B.A. (2014). Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiology, 9 (3), 361-377.
  37. Uzal, F.A., Vidal, J.E., McClane, B.A., Gurjar, A.A. (2010). Clostridium perfringens toxins involved in Mammalian veterinary diseases. The Open Toxinology Journal, 2, 24–42.
  38. Xiao, Y., Wagendorp, A., Moezelaar, R., Abee T., Wells-Bennik M.H. (2012). A wide variety of Clostridium perfringens type A foodborne isolates that carry a chromosomal cpe gene belong to one multilocus sequence typing cluster. Applied and Environmental Microbiology, 78 (19), 7060–7068.
  39. Van Immerseel, F., De Buck, J., Pasmans, F., Huyghebaert, G., Haesebrouck, F., Ducatelle, R. (2004). Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathology, 33 (6), 537-549.
  40. Williams, R.B. (2005). Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathology, 34 (3), 159-180.
  41. Wojdat, E., Kwiatek, K., Kozak, M. (2006). Occurrence and characterization of some Clostridium species isolated from animal feeding-stuffs. Bulletin of the Veterinary Institute in Pulawy, 50 (1), 63-67.
  42. Yoo, H.S., Lee, S.U., Park, K.Y., Park, Y.H. (1997). Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. Journal of Clinical Microbiology, 35 (1), 228-232.






INSTITUTE
OF FOOD
TECHNOLOGY
IN NOVI SAD
www.fins.uns.ac.rs