Jelena N. Perović*, Boško D. Marić, Nemanja V. Teslić, Jovana S. Kojić, Jelena A. Krulj, Bojana V. Filipčev, Nebojša M. Ilić, Marija I. Bodroža Solarov "/> Jelena N. Perović*, Boško D. Marić, Nemanja V. Teslić, Jovana S. Kojić, Jelena A. Krulj, Bojana V. Filipčev, Nebojša M. Ilić, Marija I. Bodroža Solarov "/> University of Novi Sad, Institute of Food Technology, 21 000 Novi Sad, Bul. cara Lazara 1, Serbia "/>

Food & Feed Research

PHYSICO-CHEMICAL PROPERTIES OF CORN-BASED SNACK FORTIFIED WITH RASPBERRY SEEDS

DOI: UDK:
633.15+664.641.15:[634.711+581.48
JOURNAL No:
Volume 46, Issue 1
PAGES
61-72
KEYWORDS
corn grits, raspberry seeds, extrusion, ellagic acid, expansion index, hardness
TOOLS Creative Commons License
Jelena N. Perović*, Boško D. Marić, Nemanja V. Teslić, Jovana S. Kojić, Jelena A. Krulj, Bojana V. Filipčev, Nebojša M. Ilić, Marija I. Bodroža Solarov
University of Novi Sad, Institute of Food Technology, 21 000 Novi Sad, Bul. cara Lazara 1, Serbia

ABSTRACT

This study was carried out in order to evaluate the effect of extrusion conditions on the physico-chemical properties of corn grits-raspberry seeds snacks. The raspberry seeds were chosen to fortify the corn-based snack due to their richness in ellagic acid, a natural phenol antioxidant which has a beneficial effect on human health. Extrudates were prepared using a laboratory single-screw extruder, operated at different conditions. Box-Behnken experimental design was used to evaluate the impact of processing variables: moisture content (18-25%), temperature of extrusion (100-200 °C) and content of raspberry seeds (0-20%) on expansion index, hardness and ellagic acid content. Snack with the highest expansion (2.15) was obtained under 18% moisture, 150 °C temperature and 0% of raspberry seeds content. The highest content of ellagic acid (609.54 mg/kg) was reported in the samples with 20% of raspberry seeds, 100 °C temperature and 21.5% moisture. Extrudates obtained under conditions of 0% raspberry seeds, 100 °C temperature and 21.5% moisture showed the highest hardness value (53.34 kg). It was concluded that changing one or more parameters in the extrusion process can significantly affect the characteristics of the obtained product, and that raspberry seeds have a great potential in food fortification.




Download full article PDF
DOWNLOAD PDF




REFERENCES

  1. Anton, A.A., Gary Fulcher, R., Arntfield, S.D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113, 989-996.
  2. Bobinaite, R., Viskelis, P., Rimantas Venskutonis, P. (2012). Variation of total phenolic, anthocyanins and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132, 1495-1501.
  3. Brennan, C., Brennan, M., Derbyshire, E., Tiwari, K.B. (2011). Effects of extrusion on the polyphenols, vitamins and antioxidant activity. Trends in Food Science and Technology, 22, 570-575.
  4. Brennan, M., Derbyshire, E., Tiwari, B., Brennan, C. (2013). Ready-to-eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks. International Journal of Food Science and Technology, 48, 893–902.
  5. Bushman, B.B., Phillips, B., Isabell, T., Ou, B., Crane, J.M., Knapp, S.J. (2004). Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. Journal of Agriculture and Food Chemistry, 52 (26), 7982-7987.
  6. Ceci, C., Lacal, P.M., Tenori, L., De Martino, M.G., Miano, R., Grazoani, G. (2018). Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients, 10, 1756.
  7. Chiu, H.W., Peng, J-C., Tsai, S-J., Tsay, J-R., Lui, W-B. (2013). Process optimization by response surface methodology and characteristics investigation of corn extrudate fortified with yam (Dioscorea alata L.). Food and Bioprocess Technology, 6, 1494–1504.
  8. Da Silva Pinto. M., De Carvalho. J.E., Lajolo. M., Genovese. M.I., Shetty. K. (2010). Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria ananassa Duch.) using in vitro models. Journal of Medical Foods, 13 (5), 1027-1035.
  9. Daniel, E.M., Krupnick, A.S., Heur, Y.H., Blinzler, J.A., Nims, R.W., Stoner, G.D. (1989). Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. Journal of Food Composition and Analysis2, 338-349.
  10. Delgado-Licon, E., Ayala, A.L. M., Rocha-Guzman, N.E., Gallegos-Infante, J.A., Atienzo-Lazos, M., Drzewiecki, J., Martínez-Sánchez, C.E., Gorinstein, S. (2009). Influence of extrusion on the bioactive compounds and the antioxidant capacity of the bean/corn mixtures. International Journal of Food Sciences and Nutrition, 60 (6), 522-532.
  11. Ding, Q.B., Ainsworth, P., Plunkett, A., Tucker, G., Marson, H. (2006). The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering, 73, 142–148.
  12. Ding, Q-B., Ainsworth, P., Tucker, G., Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66, 283–289.
  13. FAOSTAT (2017). FAOSTAT Data-Countries by commodity. Food and Agricultural Organization of the United Nations. (Retrieved October 29, 2018 from (http://www.fao.org/faostat/en/#rankings/countries_by_commodity).
  14. Filli, K.B., Nkama, I., Jideani, V.A., Abubakar, U.M. (2012). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of millet – cowpea based fura. European Journal of Food Research and Review, 2 (1), 1-23.
  15. García-Niño, W.R., Zazueta, C. (2015). Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacological Research, 97, 84-103.
  16. Gođevac, D., Tešević, V., Vajs, V., Milosavljević, S., Stanković, M. (2009). Antioxidant properties of raspberry seed extracts on micronucleus distribution in peripheral blood lymphocytes. Food and Chemical Toxicology, 47, 2853-2859.
  17. Gujral, H.S., Singh, N., Singh, B. (2001). Extrusion behaviour of grits from flint and sweet corn. Food Chemistry, 74, 303–308.
  18. Hagenimana, A., Ding, X.L., Fang, T. (2006). Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science, 43, 38-46.
  19. Hakkinnen, S.H., Karenlampi, S.O., Mykkanen, H.M., Heinone, I.M., Torronen, A.R. (2000 A). Ellagic acid content in berries: Influence of domestic processing and storage. European Food Research and Technology, 212, 75-80.
  20. Han, D.H., Lee, M.J., Kim, J.H. (2006). Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer research, 26, 3601-3606.
  21. Harris, G.K. Gupta, A., Nines, R.G., Kresty, L.A., Habib, S.G., Frankel, W.L., La Perle, K., Gallaher, D.D., Schwartz, S.J., Stoner, G.D. (2001). Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2'-deoxyguanosine levels in the Fi-scher 344 Rat. Nutrition and Cancer, 40 (2), 125-33.
  22. Jaekel, L. Z., Schmiele, M., da Silva Rodrigues, R., Chang, Y.K. (2015). Influence of the extrusion process on the technological properties of hydroxypropylated cross-linked cassava starch. Journal of Food Science and Technology, 52 (11), 7305–7312.
  23. Juranic, Z., Zizak, Z., Tasic, S., Petrovic, S., Nidzovic, S., Leposavic, A., Stanojkovic, T. (2005). Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars. Food Chemistry93, 39-45.
  24. Kapelko, M., Zięba, T., Gryszkin, A., Styczyńska, M., Wilczak, A.  (2013). Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulannase. Carbohydrate Polymers, 97, 551– 557.
  25. Kassim, M., Achoui, M., Mustafa, M.R., Ali Mohd, M., Yusoff, K.M. (2010). Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity.Nutrition Research, 30 (9), 650-659.
  26. Kaur, A., Kaur, S., Singh, M., Singh, N., Shevkani, K., Singh, B. (2015). Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates. Journal of Food Science and Technology, 52 (7), 4276-4285.
  27. Korus, J., Gumul, D., Czechowska, K. (2007). Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris l. Food Technology and Biotechnology, 45 (2), 139-146.
  28. Kosmala, M., Zduńczyk, Z., Juśkiewicz, J., Jurgoński, A., Karlińska, E., Macierzyński, J., Jańczak, R., Rój, E. (2015). Chemical composition of defatted strawberry and raspberry seeds and the effect of These dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. Journal of Agricultural and Food Chemistry, 63, 2989-2996.
  29. Kristiawan, M., Chaunier, L., Della Valle, G., Ndiaye, A., Vergnes, B. (2016). Modeling of starchy melts expansion by extrusion. Trends in Food Science and Technology, 48, 13-26.
  30. Kumar, N., Sarkar, B.C., Sharma, H.K. (2010). Development and characterization of extruded product of carrot pomace, rice flour and pulse powder. African Journal of Food Science, 4, 703–717.
  31. Landete, J.M. (2011). Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Research International, 44, 1150–1160.
  32. Larrosa, M., Garcia-Conesa, M.T., Espina, J.C, Tomas-Barberan, F.A. (2010). Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine, 31, 513-539.
  33. Lazou, A., Krokida, M. (2010). Structural and textural characterization of corn–lentil extruded snacks. Journal of Food Engineering, 100 (3), 392-408.
  34. Li, S.-Q., Zhang, H.Q., Tony Jin, Z., Hsieh, F.-H. (2005). Textural modification of soya bean/corn extrudates as affected by moisture content, screw speed and soya bean concentration. International Journal of Food Science and Technology, 40 (7), 731–741.
  35. Miller, R., Mulvaney, S. (2000). Extrusion and extruders. In Breakfast cereals, and how they are made. Eds. R. Fast, E. Cadwell, American Association of Cereal Chemist, St. Paul, pp. 215-278.
  36. Mullen, W., McGinn, J., Lean M.E., MacLean, M.R., Gardner, P., Duthie, G.G. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural Food Chemistry, 50, 5191-5196.
  37. Muthukumaran, S., Tranchant, C., Shi, J., Ye, X., Xue, S.J. (2017). Ellagic acid in strawberry (Fragaria spp.): Biological, technological, stability, and human health aspects. Food Quality and Safety, 1 (4), 227–252.
  38. Navale, S.A., Swami, B.S., Thakor, N.J. (2015). Extrusion cooking technology for foods: A review. Journal of Ready to Eat Food, 2, 66-80.
  39. Nile, S.H., Park, S.V. (2014). Edible berries: Review on bioactive components and their effect on human health. Nutrition, 30, 134-144
  40. O’Neil, M.J. (Ed.) (2006).The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. Merck Inc., Whitehouse Station, NJ, USA.
  41. Paredes-López, O., Cervantes-Ceja, L.M., Vigna-Perez, M., Hernandez-Perez, T. (2010). Berries: improving human health aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65, 299-308.
  42. Repo-Carrasco-Valencia, R., De La Cruz, A.A., Alvarez, J.C.I., Kallio, H. (2009a). Chemical and functional characterization of kaiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods for Human Nutrition, 64 (2), 94-101.
  43. Repo-Carrasco-Valencia, R., Pena, J., Kallio, H., Salminen, S. (2009b). Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49 (2), 219-224.
  44. Rios de Souza, V., Pereira, P.A.P., Da Silva, T.T.L., Lima, L.C.O., Pio, R., Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362-368.
  45. Robin, F., Dubois, C., Pineau, N., Schuchmann, P.H., Plazer, S. (2011). Expansion mechanism of extruded foams supplemented with wheat bran. Journal of Food Engineering, 107 (1), 80-89.
  46. Rodríguez-Miranda, J., Ruiz-López, I.I., Herman-Lara, E., Martínez-Sánchez, C.E., Delgado-Licon, E., Vivar-Vera, M.A.  (2011). Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT - Food Science and Technology, 44, 673-680.
  47. Singh, B., Sekhon, K.S., Singh, N. (2007). Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry, 100, 198–202.
  48. Stojceska, V., Ainsworth, P., Plunkett, A., Íbanoğlu, Ş. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chemistry, 114 (1), 226-232.
  49. Svihus, B., Kløvstad, K.H., Perez, V., Zimonja, O., Sahlström, S., Schuller, R.B., Jeksrud, W.K., Prestløkken, E. (2004). Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Animal Feed Science and Technology, 117, 281-293.
  50. Szajdek, A., Borowska, E.J. (2008). Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods for Human Nutrition, 63 (4), 147-156.
  51. Thachil, T.M., Chouksey, K.M., Gudipati, V. (2013). Amylose‐lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn‐based puffed snacks. International Journal of Food Science and Technology, 49 (2), 309-316.
  52. Thymi, S., Krokida, M.K., Pappa, A., Maroulis, Z.B. (2005). Structural properties of extruded corn starch. Journal of Food Engineering, 68 (4), 519-526.
  53. Usta C., Ozdemir S., Schiariti M., Pudd P.E. (2013). The pharmacological use of ellagic acid-rich pomegranate fruit. International Journal of Food Sciences and Nutrition64, 907–913.
  54. Wada L., Ou B. (2002). Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural Food Chemistry, 50, 3495–3500.
  55. Yağci, S., Göğüs, F. (2009). Effect of incorporation of various food by-products on some nutritional properties of rice-based extruded foods. Food Science and Technology International, 15 (6), 571-581.
  56. Yu. L., Moore. J. (2007). Methods of making and using nutritional compositions. United States Patent Application Publication, US 2007/0184164 A1.
  57. Zafrilla, P., Ferreres, F., Tomas-Barberan, F.A. (2001). Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubusidaeus) jams. Journal of Agricultural Food Chemistry, 49, 3651–3655.
  58. Zhu, L-J., Shukri, R., De Mesa-Stonestreet, N.J., Alavi, S., Dogan, H., Shi, Y.-C. (2010). Mechanical and microstructural properties of soy protein – high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. Journal of Food Engineering, 100, 232-238.

 







INSTITUTE
OF FOOD
TECHNOLOGY
IN NOVI SAD
www.fins.uns.ac.rs