Food & Feed Research

EFFECT OF CARBON SOURCES ON XANTHAN PRODUCTION BY XANTHOMONAS SPP. ISOLATED FROM PEPPER LEAVES

DOI: UDK:
577.114: 546.26:[581.45+635.64
JOURNAL No:
Volume 46, Issue 1
PAGES
11-22
KEYWORDS
biotechnological production, xanthan, Xanthomonas campestris, cultivation medium, composition, carbon source
TOOLS Creative Commons License
Zorana Z. Rončević1, Ida E. Zahović*1, Ivana S. Pajčin1, Mila S. Grahovac2, Siniša N. Dodić1, Jovana A. Grahovac1, Jelena M. Dodić1
1University of Novi Sad, Faculty of Technology Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia
2University of Novi Sad, Faculty of Agriculture, 21000 Novi Sad, Trg Dositeja Obradovića 8, Serbia

ABSTRACT

Xanthan is the most important microbial exopolysaccharide used in different branches of food and non-food industry. Due to high consumption of glucose and sucrose, usually utilized carbon sources in many bioprocesses, the most prominent research  in xanthan production is related to the isolation of new xanthan producing strains capable to metabolize other carbon sources and to produce xanthan  with  characteristics  appropriate  for  usage  in  food  industry.  The  aim  of  this  study  was  to examine  the  effect  of  variation  of  carbon  sources  in  cultivation  media  on  xanthan  production  by reference strain Xanthomonas campestris ATCC 13951 and five Xanthomonas strains isolated from infected  pepper  leaves.  Bioprocess  efficacy  was  estimated  based  on  the  quantity  and  quality  of biosynthesized xanthan. The obtained results show that both, the selection of the carbon source and selection of producing strain have a statistically significant effect on bioprocess efficacy whereby the influence of carbon sources on the analyzed parameters is more pronounced. It was confirmed that Xanthomonas strains responsible for the production of a large amount of xanthan are not suitable for biosynthesis of good-quality biopolymer. Taking into account all results it can be concluded that the greatest potential in biotechnological xanthan production has strain PFNS PL4 and glucose or starch containing media which is the basis for further research.




Download full article PDF
DOWNLOAD PDF




REFERENCES

  1. Abedinzadeh,   S.,   Torbati,   M.,   Azadmard-Damirchi, S.  (2016).  Some  qualitative and  rheological properties  of  virgin  olive  oil-apple  vinegar  salad dressing  stabilized  with  xanthan  gum. Advanced Pharmaceutical Bulletin, 6 (4), 597-606
  2. Bajić,  B.,  Dodić,  J.,  Rončević,  Z.,  Grahovac,  J., Dodić, S., Vučurović, D., Tadijan, I. (2014). Biosynthesis    of    xanthan    gum    on    wastewater    from confectionary industry. Analecta, 8 (2), 13-17.
  3. Bajić,  B.,  Rončević,  Z.,  Puškaš,  V.,  Miljić,  U., Dodić,  S.,  Grahovac,  J.,  Dodić,  J.  (2015).  White wine  production  effluents  used  for  biotechnological production  of  xanthan.  Journal  on  Processing  and Energy in Agriculture, 19 (1), 52-55.
  4. Becker, A., Katzen, F., Pühler, A., Ielpi, L. (1998). Xanthan   gum   biosynthesis   and   application: a biochemical   /genetic   perspective.   Applied   Microbiology and Biotechnology, 50, 145-152.
  5. Björn,    A.,    Karlsson,    A.,    Svensson,    B.H., Ejlertsson, J., de La Monja, P.S. (2012). Rheological characterization. INTECH Open Access Publisher.
  6. de Mônaco Lopes, B., Lessa, V.L., Silva, B.M., da Silva  Carvalho  Filho,  M.A., Schnitzler  E.,  Lacerda, L.G.  (2015).  Xanthan  gum:  properties,  production conditions,  quality    and    economic    perspective. Journal  of  Food  and  Nutrition  Research, 54 (7), 185–194.
  7. de  Crecy-Lagard,  V.,  Glaser,  P.,  Lejeune,  P., Sismeiro, O., Barber, C.E.,  Daniels, M.J., Danchinl, A.  (1990).  A  Xanthomonas campestris pv. Campestris protein similar to catabolite activation factor is   involved   in   regulation   of   phytopathogenicity. Journal of Bacteriology, 172 (10), 5877-5883.
  8. García-Ochoa,  F.,  Santos,  V.E.,  Casas,  J.A., Gómez,   E.   (2000).   Xanthan   gum:   production, recovery,  and  properties.  Biotechnology  Advances, 18, 549-579.
  9. García-Ochoa, F., Santos, V.E., Alcon, A. (2004). Chemical  structured  kinetic  model  for xanthan production. Enzyme   and   Microbial   Technology, 35, 284–292.
  10. Grahovac,   M.,   Ignjatov,   M.,   Aćimović,   M., Budakov,   D.,   Stojšin,   V.,   Bagi,   F.,   Tanović,   B. (2016):  Antibakterijska  aktivnost  etarskih  ulja  na Xanthomonas euvesicatoria. XV simpozijum o zaštiti bilja,  Zlatibor,  Serbia, Zbornik  rezimea  radova,  p. 93.
  11. Green, M., Shelef, G., Bilanovic, D. (1994). The effect  of  various  citrus  waste  fractions  on  xanthan fermentation.  The  Chemical  Engineering  Journal, 56, B37-B41.
  12. Gumus,  T.,  Demirci,  A.S.,  Mirik,  M.,  Arici,  M., Aysan,   Y.   (2010).   Xanthan   gum   production   of Xanthomonas  spp.  isolated  from  different  plants. Food Science and Biotechnology, 19 (1), 201-206.
  13. Infee  Sherley,  K.,  Priyadharshini,  R.D.  (2015). Review on production of Xanthan gum in batch and continuous    reactors. International Journal of ChemTech Research, 8 (2), 711-717.
  14. Kumara,    S.M.,    Khan,    B.A.,    Rohit,    K.C., Purushotham, B. (2012). Effect of carbon and nitro gen sources on the production of xanthan gum from Xanthomonas campestris isolated   from   soil. Ar chives  of  Applied  Science  Research,  4 (6),  2507- 2512.
  15. Leela, J.K., Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23, 687-689.
  16. Nikam, A., Mundada, P., Chavan, A., Gonjari, G. (2011).  Studies  on  acclimatization  of  xanthomonas campestris on whey for production of xanthan gum. The Bioscan, 6 (1), 43-45.
  17. Niknezhad,  S.V.,  Asadollahi,  M.A.,  Zamani,  A. Biria, D. (2016). Production of xanthan gum by free and  immobilized  cells  of  Xanthomonas campestris and  Xanthomonas  pelargoniiInternational  Journal of Biological Macromolecules, 82, 751–756.
  18. Ogunsona, E., Ojogbo, E., Mekonnen, T. (2018). Advanced  material  applications  of  starch  and  its derivatives.  European  Polymer  Journal, 108,  570– 581.
  19. Palaniraj, A., Jayaraman, V. (2011). Production, recovery   and   applications   of   xanthan   gum   by Xanthomonas campestris. Journal  of Food Engineering, 106, 1–12.
  20. Petri  D.F.S.  (2015).  Xanthan  gum:  A  versatile biopolymer  for  biomedical  and  technological  appli cations. Journal of Applied Polymer Science, 132, 1- 13.
  21. Preichardt,  L.D.,  Vendruscolo,  C.T.,    Gularte M.A., da S. Moreira, A. (2011). The role of xanthan gum  in  the  quality  of  gluten  free  cakes:  improved bakery  products  for  coeliac  patients.  International Journal of Food Science and Technology, 46, 2591– 2597.
  22. Rončević, Z., Vlajkov, V., Dodić, S., Grahovac, J.,  Dodić,  J.  (2018).  Screening  of  Xanthomonas strains and standardization of inoculum preparation for xanthan production on winery wastewaters. 12th symposium   „Novel   technologies   and   economic development“, Leskovac, Serbia, Book of Abstracts, p. 53.
  23. Rončević,  Z., Zahović, I., Dodić,  S.,  Grahovac, J.,   Dodić,   J.   (2017).   Xanthan   biosynthesis   by Xanthomonas campestris ATCC  13951  on  wastewaters  from  white  grape  processing. Ratarstvo  i povrtarstvo, 54 (3), 110-116.
  24. Rosalam,  S.,  England,  R.  (2006).  Review  of xanthan  gum  production  from  unmodified  starches by   Xanthomonas   camprestris sp.   Enzyme   and Microbial Technology, 39, 197–207.
  25. Roseiro, J.C., Esgalhado, M.E., Amaral Collaço, M.  T.,  Emery,  A.N.  (1992).  Medium  development for  xanthan  production.  Process  Biochemistry, 27, 167-175.
  26. Rottava,  I.,  Batesini,  G.,  Fernandes  Silva,  M., Lerin,   L.,   de   Oliveira,   D.,   Ferreira   Padilha,   F., Toniazzo,  G.,  Mossi,  A.,  Cansian,  R.L.,  Di  Luccio, M.,  Treichel,  H.  (2009).  Xanthan  gum  production and  rheological  behavior  using  different  strains  of Xanthomonas sp. Carbohydrate  Polymers,  77 (1), 65–71.
  27. Saha,   D.,   Bhattacharya,   S.   (2010).   Hydrocolloids as thickening and gelling agents in food: a critical   review.   Journal   of   Food   Science   and Technology, 47 (6), 587–597.
  28. Selva Mohan, T., Babitha, R. (2010). Influence of   nutritional   factors   on   xanthan   production   by Xanthomonas malvacearum. Scholars   Research Library,  Archives  of  Applied  Science  Research, 2 (6), 28-36.
  29. Sharma,  B.R.,  Naresh,  L.,  Dhuldhoya,  N.C., Merchant,  S.U.,  Merchant,  U.C.  (2006).  Xanthan gum  -  A  boon  to  food  industry.  Food  Promotion Chronicle, 1 (5), 27-30.
  30. Šuput  D.,  Lazić  V.,  Popović  S.,  Hromiš  N. (2015).   Edible   films   and   coatings   –   sources, properties   and   application.   Food   and   Feed   Research, 42 (1), 11-22.
  31. Tait, M.I., Sutherland, I. W., Clarke-Sturman, A.J.  (1986).  Effect  of  growth  conditions  on  the  production, composition and viscosity of Xanthomonas campestris exopolysaccharide. Journal  of  General Microbiology, 132, 1483-1492.
  32. Walsh, P.M., Haas, M.J., Somkuti, G.A. (1984). Genetic   construction   of   lactose-utilizing Xanthomonas campestris. Applied   and   Environmental Microbiology, 47 (2), 253-257.

 

 

 







INSTITUTE
OF FOOD
TECHNOLOGY
IN NOVI SAD
www.fins.uns.ac.rs